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+ Treats simulation as black box (does not require mathematical 

details of model) 

 

+ Does not require simplification of the process model 

 

+ Readily adapted for parallel computing 

 

− Not well suited for problems with many variables such as heat 

integration, and superstructure optimization 

 

Simulation-Based Optimization 

Easy to implement 

Goal: Develop a simulation-based optimization 

framework with heat integration for large-scale high-

fidelity process models. 

High-fidelity models applied 

Computational time reduced 

Heat integration is a separate module in optimization 

Superstructure optimization pre-determines best configuration 
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Simulation-Based Optimization with Heat Integration 
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e.g., Flow rates, 

Temperatures, Enthalpy, … 

Heat Integration Results:  

     Hot/cold utility consumptions 

     Minimum utility cost 

     Minimum number of heat exchangers 

     Optimal matches between hot and 

cold streams 

Simultaneous 

process optimization 

and heat integration 

are achieved in this 

framework  
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Graphic User Interface 

Node (a model run on process simulators or Python code) 

 Edge (information transfer 

between models) 

Tear Edge 

Recycle Loop 

Home Screen (load/save problem definition files) 

Flowsheet Editor 
Uncertainty Quantification Tools 

Optimization Tools 
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Simulation/Calculation Task 
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Heat Integration Interface 

Minimum temperature 

difference 

Utility consumptions 

Heat integration inputs 

Heat integration outputs 

Utility cost 

# of heat exchangers 
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Optimization Problem Setting 

Solver selection and parameters 

Problem Definition 

Start/Monitor Optimization 

Select decision variables 

Inequality constraint  

Python expression 

(enforced with penalty) 

Objective function  

Python expression 

Variable Scaling Method 

input variables are scaled 

to be 0 at min and 10 at max 

Min/Max constraints 

Current Value 

(initial guess) 
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Case Study 

PC Power Plant 

(Boiler + Steam 

Cycle) 
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Heat Integration Net Power Output, 

Net Efficiency 
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Case Study Results 
Objective Function:  Maximizing net efficiency 

Constraint:  CO2 removal ratio ≥ 90% 

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate 

Optimization and heat integration significantly increased net 

efficiency of power plant with CCS.  

Base case w/o CCS: 650 MWe, 42.1 % 

                   with CCS: 419.6 MWe, 27.2 % 

Simultaneous 

optimization and heat 

integration approach 

Sequential 

optimization and heat 

integration approach 

Optimization 

w/o heat 

integration 

Net power efficiency (%) 32.6 31.8 30.0 

Net power output (MWe) 504.3 491.5 463.9 

CO2 removal ratio (%) 91.9 90.2 90.2 

Electricity consumption (MWe) 86.9 75.1 75.1 

IP steam withdrawn from power cycle (kg/s) 0 0 0 

LP steam withdrawn from power cycle (kg/s) 93.9 125.3 139.0 

Cooling water consumption (m3/s) 12.8 10.4 20.7 

Heat addition to feed water (MWth) 135.4 139.8 0 
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Software:  FOQUS 

Framework for Optimization and 

Quantification of Uncertainty and 

Sensitivity 
 
 

• Builds on Sinter and the Turbine Gateway 

• Common framework for model execution 

• simulation based optimization 

• uncertainty quantification (UQ) 

• steady state reduced model building (coming soon) 

More information:  https://www.acceleratecarboncapture.org 
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