Carbon Capture Simulation Initiative

U.S. DEPARTMENT OF

Simulation-Based Optimization Framework with Heat Integration

Yang Chen^{a,b}, John Eslick^{a,b}, Ignacio Grossmann^a, David Miller^b

- a. Dept. of Chemical Engineering, Carnegie Mellon University
- b. National Energy Technology Laboratory

March 9, 2013

Lawren

Simulation-Based Optimization

+ Treats simulation as black box (does not require mathematical details of model)

Easy to implement

+ Does not require simplification of the process model

High-fidelity models applied

+ Readily adapted for parallel computing

→ Computational time reduced

- Not well suited for problems with many variables such as heat integration, and superstructure optimization
 - Heat integration is a separate module in optimization Superstructure optimization pre-determines best configuration

Goal: Develop a simulation-based optimization framework with heat integration for large-scale highfidelity process models.

Simulation-Based Optimization with Heat Integration

Graphic User Interface

National Laboratory

BERKELEY LAE

Carbon Capture Simulation Initiative

Pacific

Northwest

NATIONAL LABORATORY

.os Alamos

NATIONAL LABORATOR

EST.1943

Simulation/Calculation Task

<u>שר</u>																
1			A Nod	de Edit	•											
,				Apply	7	Revert										
				Calculation Err	or Code	(0 = oka	ay): -1									
				Name: Mix_0	1											
				Model:				-								
				x: -600.0		у:	-300.0		z:	0.0						
		Splt 01		Input Variabl	es											
	8	5		Name	Value	Unit	Ca	ategory		Default	Min	Max	Description	Tags	-	+
		Ϋ́		1 FA_In1	1000	kmol/h	r Fixed		•	1000	0.0	100000.0	Flow rate of A in from stream 1	[]		-
				2 FA_In2	100.0	kmol/h	r Fixed		•	100.0	0.0	100000.0	Flow rate of A in from stream 2	[]	_	
	Mix_01 React_01	Sep_01		3 FB_In1	0.0	kmol/h	r Fixed		•	0.0	0.0	100000.0	Flow rate of B in from stream 1	[]	=	
				4 FB_In2	0.0	kmol/h	r Fixed		•	0.0	0.0	100000.0	Flow rate of B in from stream 2	[]		
				5 FC_In1	0.0	kmol/h	r Fixed		•	0.0	0.0	100000.0	Flow Rate of C in from stream 1	L []		
				6 FC_In2	0.0	kmol/h	r Fixed		•	0.0	0.0	100000.0	Flow rate of C in from stream 3	[]	-	
				Output Varia	bles											
				Name	Value	Unit	Description	n Tags								+
				1 FA_Out	1040.0			0								_
				2 FB_Out	5.0			[]								
				3 FC_Out	10.0			[]								

CCSI Carbon Capture Simulation Initiative

Lawrence Livermore National Laboratory

Heat Integration Interface

\bigcirc															
		Node Edit													
		🖌 Apply	n Rev	<u>/ert</u>											
Calculation Error Code (0 = okay): -1															
	Heat integration inputs	Name: Heat Integration													
,		Model: Heat Integration													
•	\sim	x: -200.0	x: -200.0 y: 0.0 z: 0.0												
		Input Variable	s												
	Minimum temperature	Name	Value	Unit	Ca	tegory	Default	Min	Max	Description		Tags	+		
	difference	1 Hrat	10.0	к	Fixed		▼ 10.0	0.0	500.0	Minimum approach temperatu	re	[]	_		
		2 Max.Tim	e 60.0	second	Fixed		▼ 60.0	0.0	10000.0	Maximum allowable time for he	eat integration	ration []			
		3 Net.Pow	er null	MW	Fixed		▼ 0.0	0.0	1000.0	Net power output without CCS		0			
	Heat Integration														
	Heat integration outputs	- Output Variab	es												
	Heat integration outputs	Output Variab	les Name		Value	Unit			Des	cription	Tags	•]		
	Heat integration outputs	Output Variab	les Name Water.Co	nsumptio	Value on null	Unit GJ/hr (Cooling water	(20 C)	Des consum	cription ption (Cost: \$0.21/GJ)	Tags []		 + -		
	Heat integration outputs	Output Variab	les Name Water.Co Addition	nsumptio	Value on null null	Unit GJ/hr GJ/hr	Cooling water Heat addition	(20 C) to feed	Des consum water h	cription ption (Cost: \$0.21/GJ) eaters	Tags []		 + -		
	Heat integration outputs Utility consumptions	Output Variab	les Name Water.Co Addition n.Consul	nsumption	Value on null null	Unit GJ/hr (GJ/hr H	Cooling water Heat addition	(20 C) to feed steam	Des consum water h (230 C)	cription ption (Cost: \$0.21/GJ) eaters consumption (Cost: \$8.04/GJ)	Tags D D D		+ -		
	Heat integration outputs	Output Variab 1 Cooling, 2 FH.Heat. 3 HP_Steat 4 MP_Steat	les Name Water.Co Addition n.Consul m.Consul	nsumption mption	Value on null null null	Unit GJ/hr (GJ/hr H GJ/hr H	Cooling water Heat addition High-pressure Medium-press	(20 C) to feed steam ure ste	Des consum water h (230 C) am (164	cription ption (Cost: \$0.21/GJ) eaters consumption (Cost: \$8.04/GJ) C) consumption (Cost: \$6.25/GJ)	Tags 0 0 0 0 0 0 0	E] +		
	Heat integration outputs Utility consumptions # of heat exchangers	Output Variab	les Name Water.Co Addition n.Consu m.Consu	nsumption mption	Value on null null null null null	Unit GJ/hr 0 GJ/hr 1 GJ/hr 1 GJ/hr 1 None 1	Cooling water Heat addition High-pressure Medium-press Minimum nun	(20 C) to feed steam ure ste nber of	Des consum water h (230 C) am (164 heat ex	cription ption (Cost: \$0.21/GJ) eaters consumption (Cost: \$8.04/GJ) C) consumption (Cost: \$6.25/GJ) changers	Tags 0 0 0 0 0 0 0 0	E] +		
	Heat integration outputs Utility consumptions # of heat exchangers Utility cost	Output Variab 1 Cooling. 2 FH.Heat. 3 HP_Steat 4 MP_Steat 5 Min.No.l 6 Utility.Co	les Name Water.Co Addition m.Consu m.Consu HX	nsumption mption	Value on null null null null null null	Unit GJ/hr GJ/hr H GJ/hr H GJ/hr H GJ/hr I None I S/hr 1	Cooling water Heat addition High-pressure Medium-press Minimum nun Total utility co:	(20 C) to feed steam ure ste nber of st	Des consum water h (230 C) am (164 heat exc	cription ption (Cost: \$0.21/GJ) eaters consumption (Cost: \$8.04/GJ) C) consumption (Cost: \$6.25/GJ) changers	Tags 0 0 0 0 0 0 0 0 0 0 0 0 0	E	+		

Lawrence Livermore National Laboratory

2

Optimization Problem Setting

Case Study

Case Study Results

Objective Function: Maximizing net efficiency

Constraint: CO_2 removal ratio $\ge 90\%$

Decision Variables (17): Bed length, diameter, sorbent and steam feed rate

Base case w/o CCS: 650 MW _e , 42.1 % with CCS: 419.6 MW _e , 27.2 %	Simultaneous optimization and heat integration approach	Sequential optimization and heat integration approach	Optimization w/o heat integration
Net power efficiency (%)	32.6	31.8	30.0
Net power output (MW _e)	504.3	491.5	463.9
CO ₂ removal ratio (%)	91.9	90.2	90.2
Electricity consumption (MW_e)	86.9	75.1	75.1
IP steam withdrawn from power cycle (kg/s)	0	0	0
LP steam withdrawn from power cycle (kg/s)	93.9	125.3	139.0
Cooling water consumption (m ³ /s)	12.8	10.4	20.7
Heat addition to feed water (MW_{th})	135.4	139.8	0

Optimization and heat integration significantly increased net efficiency of power plant with CCS.

Software: FOQUS

<u>Framework for Optimization and</u> <u>Quantification of Uncertainty and</u> <u>Sensitivity</u>

- Builds on Sinter and the Turbine Gateway
- Common framework for model execution
 - simulation based optimization
 - uncertainty quantification (UQ)
 - steady state reduced model building (coming soon)

More information: https://www.acceleratecarboncapture.org

This presentation was prepared as an account of work sponsored by an agency of the United States Government under the Department of Energy. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

